## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## B.Sc. DEGREE EXAMINATION - MATHEMATICS

## FIFTH SEMESTER - NOVEMBER 2014

## MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date : $\square$ Max. : 100 Marks

Time :

## SECTION A

## ANSWER ALL QUESTIONS.

1) Define non-deterministic finite automaton.
2) Write any two differences between DFA and NFA.
3) What is meant by the language accepted by a finite automaton?
4) Define context- free languages.
5) Show that $L=\left\{a^{p}: p\right.$ is prime $\}$ is not regular.
6) Define Phrase-structure grammar.
7) Define the product or concatenation of two languages.
8) What is meant by Ambiguity?
9) Give an example of Chomsky Normal form.
10) Define Star closure.

## SECTION B

## ANSWER ANY FIVE QUESTIONS.

11. Let $M=\left\{\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right),(a, b), \delta, q_{0},\left\{q_{0}\right\}\right\}$ be a finite automaton, where $\delta$ is given by $\delta\left(q_{0}, a\right)=q_{2}, \delta\left(q_{0}, b\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{3}, \delta\left(q_{1}, b\right)=q_{4}, \delta\left(q_{2}, a\right)=q_{2}$,
$\delta\left(q_{2}, b\right)=q_{1}, \delta\left(q_{3}, a\right)=q_{3}, \delta\left(q_{3}, b\right)=q_{1}, \delta\left(q_{4}, a\right)=q_{1}, \delta\left(q_{4}, b\right)=q_{3}$. Draw the state diagram and construct the state table.
12. Construct a finite automaton that accepts exactly those input strings of 0 's and l's that end in 11.
13. Construct a DFA M accepting the strings over $(a, b)$ and ending $\{a b, b a\}$.
14. Prove that union of two regular set is regular.
15. Write a short note on Chomskian hierarchy.
16. Consider the grammar $G=(N, T, P, S)$, where $N=\left\{S,\left(P_{r}\right),(V P), V, A, N,(A u x), P\right\}, T=$ $\{$ They, are, flying, planes $\}, P=\left\{S \rightarrow\left(P_{r}\right)(V P), P_{r} \rightarrow\right.$ They, $V P \rightarrow(V)(N P), V \rightarrow$ are, $N P \rightarrow(A)(N), A \rightarrow$ flying, $N \rightarrow$ planes, $V \rightarrow(A u x)(P),(A u x) \rightarrow$ are, $N P \rightarrow N, P \rightarrow$ flying\}. Find two derivations and draw their corresponding generation trees.
17. Let $\mathrm{L}=\left\{a^{n} b^{n}, n \geq 1\right\}$. Then prove that the grammar $G=(N, T, P, S)$ where $N=\{S\}$, $T=\{a, b\}$ and $P=\{S \rightarrow a S b, S \rightarrow a b\}$ generates L.
18. Let $L=\left\{a^{n} / n \geq 1\right\}$ give an ambiguous and unambiguous grammar to generate L .

## SECTION C

## ANSWER ANY TWO QUESTIONS.

19. a) Construct a FA equivalent to NFA with the transition table given below.

| ¢ | a | b |
| :---: | :---: | :---: |
| $s_{0}$ | [-- ${ }_{-0}$ | $\emptyset$ |
| $s_{11}$ | $\varnothing$ | $s_{2} 2$ |
| $s_{\text {i2 }}$ | $\varnothing$ | $s_{2}$ |

b) Find $\hat{\delta}\left(q_{0}, 1001\right)$ for the NFA given by $M=\left\{\left(q_{0}, q_{1}, q_{2}, q_{3}\right),(0,1), \delta, q_{0},\left\{q_{3}\right\}\right\}$ and $\delta$ is defined in the following table:
(10+10)

|  | 0 | 1 |
| :---: | :---: | :---: |
| $q_{0}$ | $\overline{\left\{_{\overline{a_{2}}}\right.} \overline{q_{1}}$ | $\left[{ }_{9}, 3, q_{2}\right]^{\prime}$ |
| $q_{1}$ | $q_{3}$ | - |
| $q_{\text {q }}$ | - | $q_{3}$ |
| $q_{3}$ | $q_{3}$ | $q_{3}$ |

20. a) Construct an automata $M$ such that $T(M)=\left\{a^{m} b^{n}, m, n \geq 1\right\}$.
b) State and prove pumping lemma.
21. a) Let $G=(N, T, P, S)$ where $N=\{S, A\}, T=\{a, b\}$. Construct a production rule to show that the word $\boldsymbol{a b a b}$ has two different leftmost derivations and generation trees.
b) Let $L=\left\{a^{n} b^{m} / n \neq m\right\}$. Then prove that $G=(N, T, P, S)$ whereN $=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$ and $P=\{S \rightarrow a S b, S \rightarrow a A, A \rightarrow b, A \rightarrow a, S \rightarrow a, S \rightarrow b B, B \rightarrow b, S \rightarrow b$, generates L .
$(10+10)$
22. a) Let $G=(\{S, Z, A, B),\{a, b\}, P, S)$ where P consists of the following productions:
23. $S \rightarrow a S A$
$2 . S \rightarrow a Z A$
$3 . Z \rightarrow b Z B$
$4 . Z \rightarrow b B$
24. $B A \rightarrow A B$
25. $A B \rightarrow A b$
26. $b B \rightarrow b b$
27. $b A \rightarrow b a \quad 3 . a A \rightarrow a a$.

Then prove that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, \mathrm{~m} \geq 1\right\}$ is a CSL.
b) Construct a grammar to generate all three digit even numbers.

