LOYC	LA COLLEGE (AUTONO	MOUS), CHENNAI – 600 034
116200	B.Sc. DEGREE EXAM	INATION – MATHEMATICS
¥ - 4	FIFTH SEMESTER	– NOVEMBER 2014
LUCEAT LIN VESTION	MT 5407 – FORMAL LA	ANGUAGES AND AUTOMATA
U/A ·		
Dete	Dant Na	Mart - 100 Marta
Date :	Dept. No.	Max. : 100 Marks
	SECT	ION A
ANSWER ALL (UESTIONS.	$(10 \times 2 = 20)$
1) Define not	n-deterministic finite automaton.	
2) Write any t	two differences between DFA and 1	NFA.
3) What is me	eant by the language accepted by a	finite automaton?
4) Define con	text- free languages.	
5) Show that	$L = \{a^p : p \text{ is prime}\}$ is not regula	r.
6) Define Phr	ase-structure grammar.	
7) Define the	product or concatenation of two la	nguages.
8) What is me	eant by Ambiguity?	
9) Give an ex	ample of Chomsky Normal form.	
10) Define Star	closure.	
	SECT	ION B
ANSWER ANY I	TIVE QUESTIONS.	$(5 \times 8 = 40)$
11. Let $M =$	$= \{ (q_0, q_1, q_2, q_3, q_4), (a, b), \delta, q_0, \{ a_1, b_2, b_3, b_4, b_6, b_6, b_6, b_7, b_8, b_8, b_8, b_8, b_8, b_8, b_8, b_8$	$\{\eta_0\}$ be a finite automaton, where δ is given by
$\delta(q_0, a)$	$= q_2, \delta(q_0, b) = q_1 \delta(q_1, a) = q_3,$	$\delta(q_1,b) = q_4, \delta(q_2,a) = q_2,$
$\delta(q_2,b) =$	$q_{1,} \ \delta(q_3,a) = q_3, \delta(q_3,b) = q_1,$	$\delta(q_4, a) = q_1, \delta(q_4, b) = q_3$. Draw the state
diagram an	d construct the state table.	
12. Construc	t a finite automaton that accepts ex	actly those input strings of 0's and 1's that end in 11.
13. Construc	t a DFA M accepting the strings ov	er (a, b) and ending $\{ab, ba\}$.

- 14. Prove that union of two regular set is regular.
- 15. Write a short note on Chomskian hierarchy.

- 16. Consider the grammar G = (N, T, P, S), where N = {S, (P_r), (VP), V, A, N, (Aux), P}, T = {They, are, flying, planes}, P = {S → (P_r)(VP), P_r → They, VP → (V)(NP), V → are, NP → (A)(N), A → flying, N → planes, V → (Aux)(P), (Aux) → are, NP → N, P → flying}. Find two derivations and draw their corresponding generation trees.
- 17. Let L= { $a^n b^n, n \ge 1$ }. Then prove that the grammar G = (N, T, P, S) where $N = \{S\}$, $T = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow ab\}$ generates L.
- 18. Let $L = \{a^n / n \ge 1\}$ give an ambiguous and unambiguous grammar to generate L.

SECTION C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

(7+13)

19. a) Construct a FA equivalent to NFA with the transition table given below.

in o	a	b
S ₀	{{	Ø
<i>S</i> 11	. <u>s</u> o, _{si} t	\$;2
<i>s</i> ;2		s:2

b) Find $\hat{\delta}(q_0, 1001)$ for the NFA given by $M = \{(q_0, q_1, q_2, q_3), (0, 1), \delta, q_0, \{q_3\}\}$ and δ is defined in the following table: (10+10)

8	0	1
q_0	$\left\{ \begin{array}{c} & & \\ & & \\ & & \end{array} \right\}_{q_1}$	$\begin{bmatrix} 0, q_2 \end{bmatrix}$
q_1	q_3	· ·
<i>q</i> .2	-	q_3
<i>q</i> ₃	q_3	q_3

20. a) Construct an automata M such that $T(M) = \{a^m b^n, m, n \ge 1\}$.

b) State and prove pumping lemma.

21. a) Let G = (N, T, P, S) where $N = \{S, A\}, T = \{a, b\}$. Construct a production rule to show that the word *abab* has two different leftmost derivations and generation trees.

b) Let $L = \{a^n b^m / n \neq m\}$. Then prove that G = (N, T, P, S) where $N = \{S, A, B\}$, $T = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow aA, A \rightarrow b, A \rightarrow a, S \rightarrow a, S \rightarrow bB, B \rightarrow b, S \rightarrow b$, generates L. (10+10) 22. a) Let $G = (\{S, Z, A, B\}, \{a, b\}, P, S)$ where P consists of the following productions:

 $1. \ S \rightarrow aSA \qquad 2.S \rightarrow aZA \qquad 3.Z \rightarrow bZB \qquad 4.Z \rightarrow bB \qquad 5.BA \rightarrow AB \qquad 6.AB \rightarrow Ab$

7. $bB \rightarrow bb$ 8. $bA \rightarrow ba$ 3. $aA \rightarrow aa$.

Then prove that $L(G) = \{a^n b^m a^n b^m / n, m \}$ is a CSL.

b) Construct a grammar to generate all three digit even numbers. (12+8)